国产在线视频一区二区三区_嫩草av91_999黄色片_久久亚洲精品综合_公交车上嗯啊_日本在线观看www

当前位置:网站首页 >> 作文 >> 定积分不等式的证明 证明定积分的不等式(四篇)

定积分不等式的证明 证明定积分的不等式(四篇)

格式:DOC 上传日期:2023-01-11 19:40:56
定积分不等式的证明 证明定积分的不等式(四篇)
时间:2023-01-11 19:40:56     小编:zdfb

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

定积分不等式的证明 证明定积分的不等式篇一

湖北省阳新县高级中学 邹生书

我们把形如(为常数)

或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)

已知正整数,求证

.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数

数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图

1即,因为,所以.所以

.例2求证

.证明构造函数而函数

在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和

小于曲边梯形的面积,图

2即,所以

.例3证明。

证明构造函数知,在区间

上,因,又其函数是凹函数,由图3可

个矩形的面积之和小于曲边梯形的面积,图

3即

.所以

.二、型

例4若,求证:.证明不等式链的左边是通项为前

项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前

列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间

上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两

个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图

4例5(2010年高考湖北卷理科第21题)已知函数

处的切线方程为

.的图象在点

(ⅰ)用表示出(ⅱ)若;

在内恒成立,求的取值范围;

(ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式

列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当

时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

积,即

.图

5而

故原不等式成立.,所以,点评本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,精彩的解法不是空穴来风而是理性思维的必然结果.作者简介:邹生书,男,1962年12月出生,湖北阳新县人.现任教于阳新县高级中学,中学数学高级教师,黄石市骨干教师.近四年来在《数学通讯》、《数学通报》、《中学数学教学参考》、《中学数学教学》、《中学数学月刊》、《中学数学》、《中学教研》、《中学数学研究》、《中小学数学》、《高中数学教与学》、《中学生数学》、《河北理科教学研究》、《数理天地》、《数理化解题研究》等近二十种期刊上发表教学教研文章百余篇,在人教网中学数学栏目发表文章二十多篇.

定积分不等式的证明 证明定积分的不等式篇二

利用定积分证明数列和型不等式

我们把形如(为常数或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数型,求证例1(2007年全国高中数学联赛江苏赛区第二试第二题已知正整数

.分析 这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数知,在区间 并作图象如图1所示.因函数在上是凹函数,由函数图象可上的个矩形的面积之和小于曲边梯形的面积,图1

即,因为,所以.所以.例2 求证

.证明 构造函数而函数在和小于曲边梯形的面积,又,上的个矩形的面积之

上是凹函数,由图象知,在区间

2即,所以

.例

3证明。

证明

构造函数区间 上,因,又其函数是凹函数,由图3可知,在个矩形的面积之和小于曲边梯形的面积,图3 即

.所以

.二、型

例4 若,求证:.证明 不等式链的左边是通项为项之和,中间的通项不等式的数列的前项之和,右边通项为项之和.故只要证当的数列的前时这三个数列的可当作是某数列的前

成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为(ⅰ)用表示出(ⅱ)若; 在内恒成立,求的取值范围;.的图象在点(ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明

(ⅲ)不等式项之和,我们也可把右边当作是通项为的数列的前项之和,此式适合即,左边是通项为,则当,故只要证当的数列的前时,时,也就是要证

由此构造函数积,即,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

.图5

而立.,所以,故原不等式成

定积分不等式的证明 证明定积分的不等式篇三

利用定积分证明数列和型不等式

我们把形如(为常数)

或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)

已知正整数,求证

.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数

数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图

1即,因为,所以.所以

.例2求证

.证明构造函数而函数

在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和

小于曲边梯形的面积,图

2即,所以

.例3证明。

证明构造函数知,在区间

上,因,又其函数是凹函数,由图3可

个矩形的面积之和小于曲边梯形的面积,图

3即

.所以

.二、型

例4若,求证:.证明不等式链的左边是通项为前

项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前

列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间

上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两

个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图

4例5(2010年高考湖北卷理科第21题)已知函数

处的切线方程为的图象在点

.(ⅰ)用表示出(ⅱ)若;

在内恒成立,求的取值范围;

(ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式

列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当

时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

积,即

.图5

故原不等式成立.,所以,

定积分不等式的证明 证明定积分的不等式篇四

利用定积分证明数列和型不等式

我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)已知正整数,求证

.分析

这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数数图象可知,在区间

并作图象如图1所示.因函数在上是凹函数,由函

上的个矩形的面积之和小于曲边梯形的面积,图1 即,因为,所以.所以

.例2 求证

.证明 构造函数

而函数在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和小于曲边梯形的面积,图

2即,所以.例3 证明。

证明 构造函数可知,在区间 上,因,又其函数是凹函数,由图

3个矩形的面积之和小于曲边梯形的面积,图3

.所以

.二、型

例4 若,求证:.证明 不等式链的左边是通项为前项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图4

例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为

(ⅰ)用表示出 ;

.的图象在点(ⅱ)若 在内恒成立,求的取值范围;

(ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式数列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的时,此式适合,故只要证当 时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面积,即

.图

5而,所以,故原不等式成立.点评 本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服
主站蜘蛛池模板: 躁躁躁日日躁 | 国产精品无码翘臀在线观看 | 91九色jiuse006| 精品久久久久久无码中文野结衣 | 2022国产男人亚洲欧美天堂 | 性视频免费的全部 | 久久精品94精品久久精品 | 一二区成人影院电影网 | 国产区精品一区二区不卡中文 | 成人欧美一区二区三区黑人免费 | 黄色成人在线播放 | 成人免费福利网站在线看 | 久久亚洲福利 | 国产国产成人精品久久 | 一级毛片一级毛片一级级毛片 | 夜夜操操操 | 色费女人18毛片a级毛片视频 | 三级特黄60分钟在线观看 | 亚洲经典千人经典日产 | 亚洲人成网亚洲欧洲无码久久 | 成人免费观看视频高清视频 | yellow免费在线观看 | 亚洲2022国产成人精品无码区 | 国内揄拍国内精品少妇国语 | 亚洲国产成人在人网站天堂 | 夜夜骑加勒比 | 乱人伦中文视频在线 | 一级做a毛片在线看 | 国产精品成人观看视频网站 | 久久精品无码一区二区三区 | 婷婷综合久久中文字幕蜜桃三电影 | 日本国产在线观看 | 国内真实实拍伦视频在线观看 | 一区二区三区免费在线观看 | 玖玖精品在线 | 老司机精品影院一区二区三区 | 在线观看国产欧美 | 亚洲熟妇无码av不卡在线播放 | 在线永久免费观看的毛片 | 99热这里都是精品 | 成 人 免费 黄 色 视频 |